APPENDIX P DEFAULT VALUES FOR RISK ASSESSMENT EQUATIONS

Table 1: Standard Default Factors

<u>Symbol</u>	Definition (units)	<u>Default</u>	Reference
CSFo	Cancer slope factor oral (mg/kg-d) ⁻¹		IRIS, HEAST, or NCEA
CSFi	Cancer slope factor inhalation (mg/kg-d) ⁻¹		IRIS, HEAST, or NCEA
RfDo	Reference dose oral (mg/kg-d)		IRIS, HEAST, or NCEA
RfDi	Reference dose inhalation (mg/kg-d)		IRIS, HEAST, or NCEA
TRA	Target cancer risk (WoE=A) ^a	10-6	
TR _{B,C}	Target cancer risk (WoE=B1, B2, C) ^b	10-5	
THQ	Target hazard quotient	1	
BWa	Body weight, adult (kg)	70	RAGS (Part A), USEPA 1989 (EPA/540/1-89/002)
BWc	Body weight, child (kg)	15	Exposure Factors USEPA 1991 (Oswer No. 9285.6-03)
ATc	Averaging time-carcinogens (days)	25550	RAGS (Part A), USEPA 1989 (EPA/540/1-89/002)
ATn	Averaging time-noncarcinogens (days)	ED*365	RAGS (Part A), USEPA 1989 (EPA/540/1-89/002)
SAa	25% Surface area, adult (cm²/day)	5000	Dermal Assessment, USEPA 1992 (EPA/600/8-91/011B)
SAc	25% Surface area, child (cm²/day)	2000	Dermal Assessment, USEPA 1992 (EPA/600/8-9/011B)
AF	Adherence factor (mg/cm²)	0.2	Dermal Assessment, USEPA 1992 (EPA/600/8-9/011B)
ABS	Skin absorption (unitless): organics inorganics	0.1 0.01	PEA, Cal-EPA (DTSC, 1994) PEA, Cal-EPA (DTSC, 1994)
IRAa	Inhalation rate- adult (m³/day)	20	Exposure Factors, USEPA 1991 (OSWER No. 9285.6-03)
IRAc	Inhalation rate- child (m³/day)	10	RAGS (Part A), USEPA 1989 (EPA/540/1-89/002)

Continue Table 1: Standard Default Factors

Symbol	<u>Definition (units)</u>	<u>Default</u>	Reference
IRSa	Soil ingestion - adult (mg/day)	100	Exposure Factors, USEPA 1991 (OSWER No. 9285.6-03)
IRSc	Soil ingestion - child (mg/day)	200	Exposure Factors, USEPA 1991 (OSWER No. 9285.6-03)
IRSo	Soil ingestion - occupational (mg/day)	50	Exposure Factors, USEPA 1991 (OSWER No. 9285.6-03)
EFr	Exposure frequency - residential (d/y)	350	Exposure Factors, USEPA 1991 (OSWER No. 9285.6-03)
EFo	Exposure frequency - occupational (d/y)	250	Exposure Factors, USEPA 1991 (OSWER No. 9285.6-03)
EDr	Exposure duration - residential (years)	30°	Exposure Factors, USEPA 1991 (OSWER No. 9285.6-03)
	Exposure duration - child (years)	6	
EDo	Exposure duration - occupational years	25	Exposure Factors, USEPA 1991 (OSWER No. 9285.6-03)
Age-adjus	ted factors for carcinogens:		
IFSadj	Ingestion factor, soils ([mg•yr]/[kg•d])	114	RAGS (Part B), USEPA 1991 (OSWER No. 9285.7-01B)
SFSadj	Skin contact factor, soils ([mg•yr]/[kg•d])	503	By analogy to RAGS (Part B)
InhFadj	Inhalation factor ([m³•yr]/[kg•d])	11	By analogy to RAGS (Part B)
PEF	Particulate emission factor (m³/kg)	1.396x 10 ⁹	Soil Screening Guidance (USEPA 1996 a,b)
VFs	Volatilization factor for soil(m³/kg)	Chem. Specific	Soil Screening Guidance (USEPA 1996 a,b)
Csat	Soil saturation concentration (mg/kg)	Chem. Specific	Soil Screening Guidance (USEPA 1996 a,b)

a USEPA Carcinogenic Weight of Evidence (WoE) Classification A for Known Human Carcinogens

b USEPA Carcinogenic WoE Classification B1 or B2 for Probable Human Carcinogens, and C for Possible Human Carcinogens

c Exposure duration for lifetime residents (30 years) is integrated for childhood (6 years) and adulthood (24 years).

Equations

(1) Integrated Ingestion Adjustment Factor for Residential Exposure to Carcinogens

$$IFS_{adj} = ED_{c} \times IRS_{c} + (ED_{r} - ED_{c}) \times IRS_{a}$$

$$BW_{c} \qquad BW_{a}$$

(2) Integrated Inhalation Adjustment Factor for Residential Exposure to Carcinogens

$$\begin{array}{ccc} InhF_{adj} & \underline{ED_{c}}\underline{\times}IRA_{c} + (\underline{ED_{r}}\underline{-ED_{c}})\underline{\times}IRA_{a} \\ & BW_{c} & BW_{a} \end{array}$$

(3) Integrated Dermal Adjustment Factor for Residential Exposure to Carcinogens

$$SFS_{adj} = \frac{ED_c \times AF \times SA_c}{BW_c} + \underbrace{(ED_r - ED_c) \times AF \times SA_a}_{BW_a}$$

d Volatilization Factor (VF) from equation 8 is used for volatile organic compounds. Particulate Emission Factor (PEF) from equation 10 is used for semi-volatile and non-volatile compounds.

Equations

(4) Combined Exposures to Carcinogenic Contaminants in Residential Soil

(5) Combined Exposures to Noncarcinogenic Contaminants in Residential Soil

(6) Combined Exposures to Carcinogenic Contaminants in Non-residential Soil

$$C(mg/kg) = \frac{TR \times BW_a \times AT_c}{EF_o \times ED_o[(IRS_o \times CSF_o) + (SA_a \times AF \times ABS \times CSF_o) + (IRA_a \times CSF_i)]}$$

$$10^6 mg/kg \qquad 10^6 mg/kg \qquad VF_s^d$$

(7) Combined Exposures to Noncarcinogenic Contaminants in Non-residential Soil

$$C(mg/kg) = \underbrace{THQ \times BW_a \times AT_n}_{EF_o \times ED_o} \underbrace{[(1 \times \underline{IRS}_o) + (1 \times \underline{SA}_a \times AF \times ABS) + (1 \times \underline{IRA}_A)]}_{RfD_o} \underbrace{RfD_o}_{10^6 mg/kg} \underbrace{RfD_o}_{10^6 mg/kg} \underbrace{RfD_o}_{RfD_i} \underbrace{VF_s^d}_{S}$$

Equations

(8) Derivation of the Volatilization Factor

$$VF_{s}(m^{3}/kg) = (Q/C) \times \underbrace{(3.14 \times D_{A} \times T)^{\frac{1}{2}}}_{A} \times 10^{-4} (m^{2}/cm^{2})$$

$$2 \times \rho_{b} \times D_{A}$$

Where:
$$D_A = \underbrace{\left[\left(\Theta_a^{10/3} D_i H' + \Theta_w^{10/3} D_w\right) / n^2\right]}_{\rho_b K_d + \Theta_w + \Theta_a H'}$$

Parameter	Definition (units)	Default
VFs	Volatilization factor (m³/kg)	
D_A	Apparent diffusivity (cm ² /s)	
Q/C	Inverse of the mean concentration at the center of a 0.5 acre square source (g/m²-s per kg/m³)	68.81
Т	Exposure interval (s)	9.5×10 ⁸
$ ho_{ m b}$	Dry soil bulk density (g/cm³)	1.5
Θ	Air filled soil porosity (L _{air} /L _{soil})	0.28 or n-Θ _w
n	Total soil porosity (L _{pore} /L _{soil})	0.43 or 1- (ρ_b/ρ_s)
$\Theta_{ m w}$	Water-filled soil porosity (L _{water} /L _{soil})	0.15
$\rho_{\rm s}$	Soil particle density (g/cm³)	2.65
Di	Diffusivity in air (cm ² /s)	Chemical-specific
Н	Henry's Law constant (atm-m³/mol)	Chemical-specific
H′	Dimensionless Henry's Law constant	Calculated from H by multiplying by 41 (USEPA 1991a)
$\mathrm{D_w}$	Diffusivity in water (cm ² /s)	Chemical-specific
K_d	Soil-water partition coefficient (cm³/g)=K _{oc} f _{oc}	Chemical-specific
K _{oc}	Soil organic carbon-water partition coefficient (cm³/g)	Chemical-specific
f_{oc}	Fraction organic carbon in soil (g/g)	0.006 (0.6%)

Equations

(9) Derivation of the Soil Saturation Limit

Csat=
$$(S / \rho_b) (K_d \rho_b + \Theta_w + H' \Theta_a)$$

Parameter	Definition (units)	Default
Csat	Soil saturation concentration (mg/kg)	
S	Solubility in water (mg/L-water)	Chemical-specific
$ ho_{ m b}$	Dry soil bulk density (kg/L)	1.5
K _d	Soil-water partition coefficient (L/kg)	K _{oc} x f _{oc}
K _{oc}	Soil organic carbon/water partition coefficient (L/kg)	Chemical-specific
f_{oc}	Fraction organic carbon content of soil (g/g)	0.006
Θ_{w}	Water-filled soil porosity (L _{water} /L _{soil})	0.15
Θ_2	Air filled soil porosity (Lair/Lsoil)	0.28 or n-Θ _w
w	Average soil moisture content (kg _{water} /kg _{soil})	0.1
Н	Henry's Law constant (atm-m³/mol)	Chemical-specific
H'	Dimensionless Henry's Law constant	H x 41,where 41 is a units conversion factor
n	Total soil porosity (L _{pore} / L _{soil})	0.43 or 1 - (ρ_b/ρ_s)
$ ho_{ m s}$	Soil particle density (kg / L)	2.65

Equations

(10) Derivation of the Contaminant Concentration at 1% Free-Phase

$$C_{1\%} = Csat + \underline{n} \underline{n_r} \underline{\rho_f} \times 10^6 \text{ (mg} \cdot \text{cm}^3/\text{g} \cdot \text{L)}$$

 $\underline{\rho_b}$

Parameter	Definition (units)	Default
C _{1%}	Contaminant concentration at 1% Free-Phase (mg/kg)	
Csat	Soil saturation concentration (mg/kg)	Chemical-specific
n	Total soil porosity (L _{pore} /L _{soil})	0.43
n _r	Residual in saturation in free-product phase (L _{FP} /L _{pore})	0.01
$ ho_{ m f}$	Fluid density of contaminant (g/cm³)	Chemical-specific
$ ho_{ m b}$	Dry soil bulk density (kg/L)	1.5

Equations

(11) Derivation of the Particulate Emission Factor

PEF (m³/kg) = Q/C ×
$$\frac{3600 \text{ s/h}}{0.036 \times (1-\text{V}) \times (\text{U}_{\text{m}}/\text{U}_{\text{t}})^3 \times \text{F}_{(x)}}$$

Parameter	Definition (units)	Default
PEF	Particulate emission factor (m³/kg)	1.316×10 ⁹
Q/C	Inverse of the mean concentration at the center of a 0.5-acre-square source (g/m²-s per kg/m³)	90.80
V	Fraction of vegetative cover (unitless)	0.5
U_{m}	Mean annual windspeed (m/s)	4.69
U_t	Equivalent threshold value of windspeed at 7 m (m/s)	11.32
F (x)	Function dependent on U _m /U _t derived using Cowherd (1985) (unitless)	0.194

GLOSSARY

HEAST	USEPA Health Effects Assessment Summary Tables
	USEPA Integrated Risk Information System
	USEPA National Center for Environmental Assessment
	Preliminary Endangerment Assessment
RAGS	Risk Assessment Guidance for Superfund
	United States Environmental Protection Agency
CalEPA	California Environmental Protection Agency
OSWER	Office of Solid Waste and Emergency Response
DTSC	Department of Toxic Substances Control